0-7803-7120-8/02/$17.00 © 2002 IEEE

DYNAMIC LOAD-BALANCING FOR A PARALLEL ELECTROMAGNETIC
PARTICLE-IN-CELL CODE"

David B. Seidel, Steven J. Plimpton, Michael F. Pasik, Rebecca S. Coats
Sandia National Laboratories
Albuguergue, NM 87185-1152
Gary R. Montry
Southwest Software
Albuguerque, NM 87111

Abstract

QUICKSILVER is a 3-D electromagnetic particle-in-
cell simulation code developed and used at Sandia to
mode! relativistic charged particle transport [1]. It was
originally written for shared-memory, multi-processor
supercomputers such as the Cray X/MP.

A new parallel version of QUICKSILVER has been
developed [2] to enable large-scale simulations to be
efficiently run on massively-parallel distributed memory
supercomputers with thousands of processors, such as the
DOE ASCI (Accelerated Strategic Computing Initiative)
platforms. The new parallel code implements all features
of the original QUICKSILVER and runs on any platform
that supports the message-passing interface (MPI)
standard [3] as well as on single-processor workstations.

The original QUICKSILVER code was based on a
multiple-block grid, which provided a natural strategy for
extending the code to partition a simulation among
multiple processors. By adding the automated capability
to divide QUICKSILVER’s existing blocks into sub-
biocks and then distribute those sub-blocks among
processors, a simulation’s spatial domain can be easily
and efficiently partitioned. Based upon this partitioning
scheme as well as QUICKSILVER’s existing particle-
handling infrastructure, an efficient algorithm has been
developed for dynamically rebalancing the particle
workload on a timestep-by-timestep.

This paper will elaborate on the strategies used and
describe the algorithms developed to parallelize and
dynamically load-balance the code. Results of several
benchmark simulations will be presented that illustrate the
code’s performance and paraliel efficiency for a wide
variety of simulation conditions. These calculations have
as many as 10° grid cells and 10° particles and were run
on thousands of processors.

1. Field Solver Parallelization

To decompose a simulation’s finite-difference grid over
multiple processors, QUICKSILVER’s preprocessor,
MERCURY, was modified to subdivide the user-supplied,
possibly multi-block, grid into many sub-blocks and

distribute those blocks among the processors. MERCURY
provides detailed user control over the way in which the
criginal blocks are subdivided and how they are then
distributed to processors (in general, multiple sub-
blocks/processor). By default the algorithm will, as best it
can, decompose using one sub-block per processor, with
all blocks being the same (roughly cubical) size. This will
balance the field computation, while minimizing inter-
processor communication. Fig. 1 shows a 2-D example of
this strategy for an eleven-block decomposition. Initially,
a single cut A is made, then two cuts B, etc.
D A C

¥ T T T T T T
IRV R N VU (DU N P N S
[1 P I
T R R T -
1o 1 Do |
2 bt Sl i Rl (il B S it

C L L I
1 t 3] | i 1 1
F 1= 4 = - . B
[L [
B T L TrgeTYTenT
(UL R TN P (U AN O
1 [] [
F—1-f-+-1-3 -+ . D
1 [1 [
Foi=f-rom-r -1
L el | Lol
C c

Figure 1. A 2-D schematic of a single block decomposed
into eleven blocks.

Field “connections” between adjoining blocks take
place at two points during a timestep. The first is after E
and B fields have been updated in each block. The
second is after J and p fields have been created by
scattering particle current and charge. In both cases,
fields have been computed within individual blocks.
Before the timestep can proceed, field values at or near
block boundaries must be exchanged between blocks.

A convenient paradigm for the communication required
for this connection is to define a “send” set of all values
of a given block where the computed values of a specific
field compenent are known to be valid, and a “receive”
set of all values of another block where needed values of
that component are known to be invalid (or incomplete in
the case of J or p). An “overlap” set can be defined to be
the intersection of these two sets and represents the data
that must be sent from the “send” block to the “receive”
block. Fig. 2 shows a 2-D example of such a connection
for the E, field component. Each processor constructs a

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC(4-94 AL.85000.

1000

plan that describes the overlap sets it needs to exchange
(send and receive) with other processors. The functions
that create and use these fairly complex data structures are
written in C. For a more detailed description, see [2].

Receive
~TrTrTTTTI1T
Vo1 .J'

i
Ly
|
! L
. | |
a [

1 ' 1 i I
LoL_oL_i-L_2

Send

Ee

]

Overlap 2

Overlap 1

»

[3
»

[y

Figure 2. A 2-D diagram of edge-centered E; field
components in two blocks. Above are the “send” and
“receive” sets; below two possible overlap sets are shown
for two different ways the blocks adjoin.

To assess the performance two sets of simulations were
performed on Sandia’s Intel Tflops machine. The first was
a single 80x100x96 grid block (768,000 cells) run with
typical boundary conditions, repeated for several different
numbers of processors. The second problem was similar
to the first, except that the number of grid cells was scaled
with the number of processors (27,000 cells/processor).
We compute parallel efficiency by dividing the 1-
processor run time by the product of P and the P-
processor run time, where P is the number of processors.
The results are summarized in Fig 3.

5)
&
8
2
=)
44]
3
=
S 20 b 1
! 0 L 1 L L L 1 L L L L
1 4 16 64 256 1024

of Processors

Figure 3. Parallel efficiency for both a fixed-size (dashed)
and scaled-size (solid) problem.

The data shows that the algorithm is very efficient as
long as each processor has a sufficient number of cells; as
the number of cells per processor goes down, the ratio of

communication (overhead) to computation {work) goes
up. We believe that the observed super-linear performance
(efficiencies greater than 100%) is due to cache effects.
When the problem size per processor is reduced enough
that significant portions of the field arrays fit in cache, the
field update computations speed up.

IL. Parallelization of Particle Handling

In the original version of QUICKSILVER, particle state
information (position, momentum, charge) is stored in
fixed-length containers referred to as caches. Caches are
dynamically allocated as needed and can be collected in
lists that represent the state of all simulation particles at
any given time. Since particles are continuously entering
and leaving the simulation, the code maintains an input
cache list, describing the particles at the beginning of the
timestep. As particles from this list are advanced in time,
those surviving, as well as any created, are placed in
caches in the output cache list. Then at the end of the
timestep, the input caches are discarded, and the output
list becomes the input list for the next timestep.

With this infrastructure in place, it was straightforward
to extend the code for distributed memory operation by
adding a third cache list (the migrate list) and adding a
few extra steps to the particle-handling process. Now,
after a particle has been advanced in time, in addition to
determining whether or not it survives, we also must
determine if it has moved into a block owned by another
processor, in which case it is placed in a cache on the
migrate list. Since local field values at each particle’s
location are needed to advance the particle, and each
particle needs access to the current density and charge
fields in order to allocate contributions due to their moticn
and position, it is desirable to assign particles to the
processor that owns the block in which they are located.
Hence all particles in the migrate cache list will need to be
transferred to the processor owning their new block.

After all of the particles on all processors have been
advanced, each processor counts how many particles in its |
migrate caches need to be sent to each of its neighbor
processors {processors that own a block that adjoins one
of its blocks) and sends that count to each neighbor. After
this information is communicated, each processor can
post a receive, with adequate buffer space for the
message, for each processor that will be sending it
migrating particles. Now each processor bundles the
particle state data destined for each neighbor processor
and sends a message containing that data. Finally, it waits
for the messages for which it earlier posted receives, and
as those messages arrive, it puts the particles contained in
each message into caches on its own output cache list,

To assess the performance of the particle handler, six
series of problems were performed. The first two had a
spatially uniform particle density (all particles were
moving at ~1/2 cell per timestep, but in such a way that
the density remained uniform). One series was a fixed-
size problem with ~262K cells and 3.15M particles. The

1001

other was scaled with 27K cells and 324K particles per
processor. The performance is shown in Fig. 4, which
indicates that the efficiency remains quite high until the
number of particles per processor falls below ~30K per
processor, at which point the communications overhead
starts to become significant.

100 - e SV S ST -

€ g0} N

= .

£ 6ot E

&

o 40 r S -
g LT 1

B 20 f & S

="

0 1 L 't 1 'l i L 1 L
1 4 16 64 256 1024

of Processors

Figure 4. Parallel efficiencies for particle handling. Solid
and dashed lines are efficiencies for scaled-size and fixed-
size problems, respectively. Circles indicate uniform
particle density; squares and triangles indicate static and
dynamic imbalanced cases, respectively.

We also performed benchmarks with both static and
dynamic imbalanced particle distributions, with both fixed
and scaled problem size. The fixed-size problem is the
same as the uniform case previously described except that
~2% of the cells contained four times the average number
of particles per cell, 14% had 3.7 times the average, 42%
had 1.3 times the average, and 42% contained no particles
at all. The scaled-size problem was also the same as the
uniform case but the imbalance was increased such that
0.1% of the cells contain ten times the average number of
particles and ~73% have no particles. The particles were
loaded in such a way that although moving at high
velocity, their distribution remained unchanged in the
static case and moved rapidly along the diagonal of the
simulation extent in the dynamic case. Fig. 4 shows the
performance for these two cases. Note that the fixed-size
problem can never have a processor with more that four
times the average workload and this limit is reached for
64 or more processors. Similarly, the scaled-size problem
is limited to ten times the average workload, which occurs
for 1000 or more processors. The performance curves in
Fig. 4 reflect this loss of efficiency due to imbalance in
the particle workload.

1I1. Load Balancing

There are several approaches to deal with workload
imbalance caused by non-uniform particle distribution.
The algorithm we implemented, which will be described
here, was chosen for three primary reasons. First, it is
reasonably efficient with regard to the amount of
overhead required for inter-processor communication.
Second, the cost and complexity associated with
dynamically rebalancing as the simulation’s particle

distribution changes during the course of the simulation is
reasonably low. Finally, the algorithm requires
surprisingly little modification to the existing particle
handling described in the previous section.

The concept we have adopted continues to use the static
decomposition of the field grids, but dynamically
migrates particles from overworked processors to
underworked ones via “windows” within a processor’s
blocks. A “window” is a contiguous sub-region of grid
cells within a heavily loaded block that is mapped to a
new block on a lightly loaded processor, as illustrated in
Fig. 5.

prec ¢

proc O

proc 1 proc 2

Figure 5. A three-processor decomposition with one
block assigned to each processor {on left). Shaded regions
of processor 1's heavily loaded block are designated as
"windows" and assigned to processors 0 and 2 (on right).

Particles within the window migrate from the “parent”
block {on the heavily loaded processor) to a new “child”
block (on the lightly loaded processor). The child
processor pushes those particles as long as they remain
inside the window region. Particles that enter/exit the
window migrate between the parent and child processors.
For example, on the lefi side of Fig. 5 each of 3
pfocessors initially owns one block. If processor 1's block
(the parent) has too many particles, two (shaded) window
regions (the children) are created, one each for processors
0 and 2. Processors 0 and 2 will each push particles in two
blocks, their original block and their new child block.

Note that within the window regions, the child
processor will only push particles; the parent processor
will continue to compute F and B field updates in these
regions in order to maintain load balance in the ficld
computations. Since the child’s processors new particles
actually reside (in a geometric sense} in the parent block,
communication of additional field information between
the parent and child processors is required. In practice
achieving load balance in both the particle push and the
field update more than compensates for this extra
overhead. QUICKSILVER maintains this balance by
dynamically adjusting the number and sizes of windows
based upon threshold parameters supplied by the user.

To assess the performance of the load-balancing
algorithm, the four load-imbalanced simulation series
described in the previous section were repeated with the
load balancer turned on. The results are shown in Fig. 6. It
is seen that for the case of static imbalance, the algorithm

1002

works quite well, almost equaling the performance of the
case of uniform particle distribution and a significant
improvement over not using the load balancer. On the
other hand, for the case of dynamic imbalance the
performance is significantly reduced, although it remains
a clear improvement over the unbalanced case. It should
be noted that the dynamic benchmark is particularly
stressful to the algorithm because all the particles are
moving in a single direction at high velocity and
consequently rebalancing is frequently required (one in
four timesteps for 512 processors). Since every time a
rebalance occurs, particles are pushed for one step in a
totally unbalanced manner, this represents a significant
(and probably unrealistic for most real problems) loss.

100
80

60 |

40

20

Parallel Efficiency (%)

256 1024

of Processors

100 » =y
i debetd S . J
80 3
60]

40 + :

Parallel Efficiency (%)

1 4 16 64 1024

of Processors

Figure 6. Parallel efficiencies for fixed-size (upper) and
scaled-size (lower) problems. Squares and triangles show
load balancing turned off and on, respectively. Shaded
and open symbols indicate static and dynamic imbalance
in particles, respectively. The dashed lines are for the
correspending uniform-load simulations.

256

To assess the performance of the load balancer for a
realistic application, we present data collected by T. D.
Pointon [4] using this algorithm to simulate the vacuum
power flow section of Sandia’s Z accelerator. The
simulation was performed on Sandia’s Tflop computer
using 100 processors. The simulation ran for 500K
timesteps with 780K celis and 1.2M particles (average)
with a spatially and temporally non-uniform distribution.
We can define a measure of the imbalance to be the ratio
of the maximum particle count on any processor and the
average particle count over all processors. A value of one
indicates perfect balance; higher values represent the
increase in run time over the perfectly balanced case since

the run time of the processor with the most particles
determines the time required by the simulation. Using this
single-timestep value, we can then compute a cumulative
imbalance by taking its particle-weighted average over
time. This cumulative imbalance is plotted as a function
of time in Fig. 7 for the simulation with and without load
balancing. By the end of the simulation, the algorithm has
improved the imbalance from ~6.7 to ~1.25. On average,
the algorithm rebalanced once every 400 timesteps and
one cell in every seven was in a window block.

—
(=
4
,

g - load balanced
£ gl AEEEELE not load balanced <
g Mmoo]
3 -]
E 6f ;
e
g4]
E] J
:]
0
50 100 150 200
Time (ns)

Figure 7. Cumulative load imbalance for a 100-processor
simulation of the electron flow in the Z accelerator.

IV. Conclusions

A new parallel version of QUICKSILVER has been
developed that scales well te large numbers of distributed
memory processors. A novel algorithm using “window
blocks™ provides efficient load balancing of the particle
computation, even for highly non-uniform (spatial and/or
temporal) particle distributions. Setup and domain
decomposition are handled by the MERCURY pre-
processor and QUICKSILVER's original wide variety of
boundary conditions, sources, and output diagnostics are
still available.

V. References

[1] D. B. Seidel, M. L. Kiefer, R. §, Coats, T. D.
Pointon, I. P. Quintenz, and W. A, Johnson, “The 3-D,
Electromagnetic, Particle-In-Cell Code, QUICKSILVER,”
in The CP90 Europhysics Conf. on Computational
Physics, A. Tenner, Ed., World Scientific, Singapore.

2] 8. J. Plimpton, D. B. Seidel, M. F. Pasik, and R. S.
Coats, “Load-Balancing Techniques for a Parallel
Electromagnetic Particle-in-Cell Code,” Sandia Natl.
Laboratories, Albuquerque, NM, Tech. Rep. SAND2000-
0183, Jan. 2000.

[3] Argonne National Laboratories, “The Message

Passing Interface (MPI) Standard,” Available:
http://www-unix.mcs.anl.gov Directory: mpi File:
index.html.

[4] T. D. Pointon and W, A. Stygar, “3-D Simulations of
the Electron Flow in the Vacuum Power Flow Section of
the Z Accelerator,” P4-EQ8, this proceedings.

1003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

